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Abstract

Strongly nonlinear dispersive waves described by a general Klein-Gordon
equation with slowly varying coefficients and a dissipative perturbation are
considered. The method of multiple scales shows that the equation for wave action
and the dispersion relation (based on the averaged energy) are valid to a higher
order than anticipated. Thus, higher order terms are calculated from the first
varjation of wave action. The spatial and temporal slow modulations of the
phase shift are shown to be governed by a new equation, which is universal for
small but otherwise arbitrary dissipation, This result extends to nonlinear
partial differential equations the quite recent work by the authors on new
adiabatic invariants for nonlinear oscillations governed by ordinary differential

equations,
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1. Introduction. R
ha
h

Oscillatory solutions of strongly nonlinear dispersive waves are quite

common, perhaps the most well-known being the cnoidal waves for the Korteweg-

A -

deVries equation. In order to understand the effects of a slowly varying medium, Luke g,
[1] in 1966 utilized the method of multiple scales toanalyze a model nonlinear problem, !
the nonlinear Klein-Gordon equation. This extended Kuzmak's work [2] on oscillatory W
solutions of nonlinear ordinary differential equations to the case of nonlinear z&
partial differential equations. In this way, the amplitude-dependent dispersion ]
relation could be used to show that the slow time and spatial evolution of the ?.E
amplitude of strongly nonlinear dispersive waves was governed by conservation ?:
of wave action, the appropriate generalization of the adiabatic invariant of Ci
nonlinear ordinary differential equations. With a small perturbation representing if
damping, Whitham [3] showed how wave action was dissipated. K
Although the modulated phase shift for a nonlinear wave is part of the el
leading order long time slowly varying solution, it has eluded previous efforts ﬂﬁ
until now. For unperturbed non-dissipative systems, Luke [1] correctly observed ::
that the phase shift satisfied a second-order equation, one solution of which ﬁ
is a constant. However, the equation was not stated, which apparently has led to iﬁ
some common misconceptions concerning the phase shift. The same non-dissipative fg
situation was reexamined by Dobrokhotov and Maslov [4]. They introduced some !
imaginative ideas that enabled the perturbation method to be carried out to the ‘%
higher order necessary for the calculation of the phase shift. Unfortunately, ?:
their technique is not as easy to implement as ours, which we believe is the reason Y
they incorrectly omit a term in their analysis. For the case of strongly nonlinear %
ordinary differential equations with small arbitrary damping, we (Bourland and %
Haberman [5]) quite recently obtained the second-order differential equation for ‘Q
the modulated phase shift. We showed that the phase shift ¢(T) is determined Aﬁ
\
3
:i
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from a new and unexpected adiabatic invariant of universal form, independent of
the type of small (but arbitrary) damping; the small frequency modulation d¢/dT
was shown to be a constant multiple of the derivative (with respect to energy)

of the amplitude-dependent frequency of the nonlinear oscillator.

In §2, we apply the method of multiple scales to the nonlinear Klein-Gordon

equation with slowly varying coefficients and a small arbitrary perturbation.
There we briefly rederive the well-known equation for the dissipation of wave

action:

2 () - ATV () = - R, (1.1)
where k is the wave number vector, w the frequency, -wJ the wave action,
-CZJE the flux of wave action, and R the dissipation of wave action, In §3,
we begin to analyze the perturbation expansion to a higher order. If the
leading order perturbation is dissipative, then we show that wave action
satisfies (1.1) to at least one higher order than would have been anticipated.
Thus, we show that the equation needed to describe the modulations of the phase
shift ¢(§,T) may be obtained in a simpler way, by just considering the first
variations of the well-known equation for the wave action. We conjecture that
this is a general principle.

We obtain the phase shift in 84 by eliminating secular terms at a higher
order in our perturbation expansion, Here, we show that the leading order

perturbation Uy of the leading order solution Up satisfies

uy = Du0 . (1.2)
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where in §4 we obtain D and show it to be a linear first-order differential
operator in the slow parameters, energy and wave number vector. We choose

D in the appropriate way so that it is easy to derive that the partial differential
equation for the modulated phase shift ¢{X,T) is

2(

Dr(-wd) - cA(X,T)Dy + (k3) = 0 . (1.3)

Later (in §6) we show that D is the Taylor series operator in the parameters

E and 5, so that
6 = E, 24 K,V (1.4)
1 38 21 k *

where k] = V¢ is the perturbation of the wave number and E] is the average of

the perturbation of the energy. In (1.3) Dy and Dv are partial derivatives of

~

the operator 6. (In one-spatial dimension BV = DX’ while in higher spatial
dimensions Bv is defined in §4,) It is interesting to note that once B is
determined, (1.3) can be obtained fromthe wave action equation (1,1) by
replacing é% by BT’ Ve by BV-, and omitting the dissipation. Equation (1.3)
is a partial differential equation since the coefficients for B depend on
o1 and V¢,

In §5 we obtain equivalent results for the Klein-Gordon equation by
elementary (but innovative) considerations of the first variation of wave action
(1.1) with respect to perturbations of the wave number and averaged energy. We

show that the perturbation of the frequency is accurately determined from a




higher-order dispersion relation which includes the averaged perturbed energy.

From these ideas, we obtain

2 d 2.2, _

VE, 'a‘E(EJ)'C JVve =0 ,
(1.5)

E]Ta—aE- (-wd) + Voy Vk(-wJ) -C
where E] = (-¢T.- ka -V¢)/wE is the average of the perturbation of the energy,
Equation (1.5) is shown to be equivalent to (1.3). Its form is universal, since
it is independent of the dissipation. We conjecture that (1.5) is a new general
principle for the determination of the modulations of the phase shift. In the
case of ordinary differential equations, our [5] recently proposed adiabatic

invariant follows directly from (1.5), and §5 dramatically simplifies its

interpretation, Stability of these nonlinear periodic waves are discussed in §7.

2. Nonlinear Dispersive Waves.

In this section, we will derive in the standard way the equation for wave
action for the perturbed nonlinear Klein-Gordon equation with slowly varying
coefficients
2

2
Ugg - € (K’T)vx

(2.1)

where V(u,X,T) is a nonlinear potential depending on the s1ow-time scale
2
T = et and slow spatial scales X = ex. The notation V 2 ——7 is being used.
i=1 3

We assume the potential admits oscillatory solutions of (2.1) (for all fixed X T)

on the fast time scale t without the perturbation (i.e., when h = ] = 0), Unlike

Luke [1] and Dobrokhotov and Maslov [4], we allow an arbitrary slowly varying
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u + Vu(U,Z,T) + Eh(u,ut,VU,X,T) + €2h~|(usut9vu,X9T) =0 ,
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small O(e) perturbation, ch., To show the effects of an even smaller perturbation,

we include the szh] term. For the early parts of this paper, we make no further

assumptions concerning these perturbations. However, the most interesting conclusions
(that we will reach in later sections) occur when eh is a dissipative perturbation,

so that h is odd in the combined arguments u, and W

t
[i.e., h(u,-ut,-Vu,X,T) = -h(u,ut,Vu,5,1j] and szh] is non-dissipative
(even in the combined arguments).

We use the method of multiple scales [6] with the fast scale y and the slow

scales T and 5:

>
H
™
x
-

and follow the procedure we [5] used for ordinary differential equations. This
form of the method of multiple scales is particularly suited for the eventual

first determination of the phase shift ¢(§,T). For example,

uy = (eT+e¢T)u teur

v

so that (2.1) becomes exactly

(eT + ech)qu + e:[(eTT + €¢TT)“w + 2(6T + €¢T)“wT]

- cz(ve + s:\7¢)2uw - ecz[(vze + eVzcb)uw + 2(Ve + eVg) o Vuw]

i\
+ ezu - ezczvzu + V (u,X,T) + eh + ezh =0 , (2.2)
17 TARLAH 1
e e A S TS L D, i D St S TV AT e o A A T VT e XA
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where from here on v = Z éi 5%— refers to differentiation of a quantity
i=1 j

with respect to the slow spatial variables. We now introduce the perturbation

expansion

U(WaE:T) = uo(w")‘("T) + Eu‘l(w’!’T) + €2 uz(w"x"T) + LA

It is convenient to note that

X,T)

Vo XoT) =V (ug uT) + (euy + €Puy) v (ug.X

2

u
2'—%~ Vuuu(UO’K’T) * 0(53)

uu

-

h(u,ut,vxu,K,T) = h(u,eTuw *oedru, + eur , Vou

v + eVou, + evu , X,T)

v v ~

= h(U ,e u ,Veu ’X’T)
0T OW Ow ~

+ efush + (67uy + dquy + us Jh + (VOu; + Vou, + vu.)eh ] B
1u ™, o, T oy 1 0, 07"~ ‘
+ 0(62)

Y v ool vy ,
N 5 .
and EV = -iz] m @1 h(UO.eTUOw,UOw VS,Z(',T) .

Substituting the perturbation expansion into (2.2) yields, to leading order,

1
the nonlinear oscillator equation:
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(6% ~ c2(X,T)(vefluy  + V (upX,T) =0 . (2.3)

vy

The higher order terms become

s (2.4)

2
_ 2 2 2 3
where L = [eT -cC (f,T)(Ve) ] g;7 + Vuu(uo,E,T) is the linearization of the

nonlinear operator in (2.3). It is not difficult to obtain the right-hand

sides. For example,

R]=-
3 2
- 28y 57 -
- h{u,,64Us U
0T Ow OW

>~(,T)ve-v]u0 - [

V6,X,T)

2[o707 - CZ(X,T)VG-V¢]u0

w

Orr - c2(§,T)Vze]u0 (2.5)
] Y

R2 = - 2[¢TeT - c2(§,T)ve-v¢]u] - z[eT g% - c2(§,T)ve-v]u]

1
] Vuuu

h

[ogy - cz(g,T)v2e1u1w - [lop)? - 2,T)(76) %1,

12 v

vy

206; 2 - CTIVeTuy - o - XTIV, (2.6)

12 v

{

(ugs XTI = [ - c2(x,T)v?0u,
]

17Uy - [Bpuy +oopug +ug Jhy - [V0uy o+ Tgup + Tuplehy

T |2 L

where h] is evaluated at the leading order,

The leading order equation (2.3) is a nonlinear ordinary differential equation

in the fast variable y. Multiplying by u

conservation of energy equation,

------ .‘:,l.s."o. .:“ ‘:‘":.l':.‘.:‘l‘a,“."n“.‘o » o‘.‘:.." 4, “n.‘.n\l.u l':'":.‘.’u" " \x 'l\'ﬂ.".‘l‘.".‘.‘.'&l. '&l'l‘:’.‘l':’!‘!.'!‘l'ﬁ‘

0 and integrating once yields the
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[62 - ¢2(v8)%1(u

2
T 0 )

+ V(ugeX,T) = E(X,T) (2.7)
1%

1
2

where E(ﬁ,T) satisfies a well-known equation, which we will rederive. Standard
phase plane analysis shows that the solution uo(w,ﬁ,T) is periodic in y

for appropriate potentials V(uO,X,T), oscillating between Ug with

u
min and 0max
V(u0 »X;T) = E and a similar expression involving ug - As Luke [1] showed
min ~ max
and we [5] repeated, uo(w,x,T) can be defined as an even function of Y with
- du

0 or u, and jygv(O,X,T) = 0. The period of the oscillation
min max v -

in the fast variable is constant [1], and we normalize it to 1 (although 27 is

ug(0,X,T) = u

often used) which gives

UO (Z’T) ’2

X,T)(v6)2 = { 2 J max A [E(X,T) - V(uo,X,T)]-%duO
~ Ug (X,T) /2 ~ -~

min ~ J

(2.8)

()% - <

In this situation, the notation k = Vo for the wave number vector and w = -0¢
for the frequency is appropriate,* Equation (2.8) may be
regarded as the dispersion relation, w = w(E(f,T),E({,T),Z,T), for the propagation
of nonlinear waves in a nonuniform media as described by (2.1).

Some well-known results on the linearized operator are needed to analyze
the higher order equations, L(yi) = Rs. Taking the derivative of (2.3) with respect
to ¢ yields L(u0 ) = 0, showing that uow is a homogeneous solution. Since
uo(w’f’T) is an even periodic function, Ug is an odd periodic homogeneous solution;
usually it is the only periodic solution [1]. In order for the solutions of (2.4)
to be periodic, the Fredholm alternative implies that

*
In comparing this to the case of ordinary differential equations, note that wode='wpde‘
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equivalent to the usual secularity condition.

For i=1, using (2.5), (2.9) becomes

1
2
=2[9:61 = c7(X,T)Ve-V4] J Uy u, dy
T ~ 0 Oy Yy
3 2 1
-2[6; == ~ c“(X,T)ve.v] J Un Un dy
a1 z
T 0 ow ow
-[eTT - c2(X,T)V26] f]uo ug dy
: ~ 0 vy
- j h(unsBrUn sUn V6,X,T)dy = 0
0 0 TOw 0, "=

The first integral is zero. The next two integrals combine to yield Whitham's

[3] well-known partial differential equation describing the possible dissipation

of wave action:

1 )
g% (6, j (u0 )2 dy] - cz(X,T)v- [(ve) ( (ug )zdlb]
0 “y ~ 0y
: (2.10)
+ J h(u,,8-Uy 5 Uy V8,X,Tu, dy = 0
0 0’ Ow OW ~ Ow
We define the latter integral to be the dissipation R and
1
p
3= | (ug )dw (2.11)
0
so that (2.10) may be written as
3 2 1
3T (eTJ) -c°V . (JVe) + J h(uo,eTuo sUg V6,X,T)dy = 0 . (2.12)
0 vy T
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For ordinary differential equatons [2], this simply reduces to the possible 4
2]
dissipation of action (an adiabatic invariant if h = 0).

¢

¥

£

3. Higher Order Wave Action. 7
In this section, we show that wave action satisfies (2.10)to at least "3
one higher order. We will use this in §4 to determine an equation for the 3
modulations of the phase shift ¢(X,T). To obtain these results, we eliminate ;i
F

the secular terms in the 0(52) equation: !
A

l

rl ’

} Rzu0 dy =0 , (3.1) 2

0 P 7

where R, is given in (2.6). As with the case of ordinary differential X
)

)

equations ([4],[5]), the following difficult term can be calculated by integration jQ
by parts, then by recaliing the definition of L, and finally by using L(u]) = Ry: S
1 » 1 o
jovuuu(uo,l(,T)u1 ug dy = -2 fovuu(uo,c,T)u]u] dy o

Y v Ny,

! 2 2.2

= - 2f Tty - WP- APy Tuy -

0 Wy F

=2 ]{2( 8 Zve.v ) + 2(9 . czve-v) :

¢)T T‘C ¢ uo TaT uo ;

0 2% v ]

2.2 y

+ (871 =V B)U, +h{unsBqUpn 5 Un VB, X,T)} u, dy :

17T Okb 0°"T 011) OlP ~ ]\P .:.

N

\

where the periodicity of some expressions has also been used, In this manner, M
from (3.1), we obtain ';
)

X

4

N

bt
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e

1

9

.(

Y

[




=11 -

1 1
2 Lo, jo (u%)z a] - 2o [9 jo(uow)zdw

1 1
2 g% [eT J Ug Uy dy] - CZV- [ve Jéuowu] dy]

0 v v 1%
(3.2)

fl 1 1
+ | huy dy + j uu, h dy + J (67uy + ¢-uy *tun ) U, h dy

0 ]w 0 1 Ow u 0 T 1w T Ow 0T Ow '

! 1
+J(veu + Véus +Vu,) u, *h d\p+Jhu dy = 0

0 lw Ow 0 Ow ~V 0 ] Ow

A similar calculation was presented by Dobrokhotov and Maslov [4]. They
incorrectly calculated one term and thus did not obtain (3.2). Furthermore,
their resuits were for unperturbed systems (h = h] = 0). Equation (3.2) is
not a difficult equation; by comparing it to (2.10), we see that most of the
terms are the first variation of the wave action equation (2.10), as we now
show. Wave action is a concept valid for the leading order terms in a
perturbation expansion. The wave action defined in terms of total frequency,
total wave number vector, and total u will not satisfy (2.10). However, we

expect there might be an 0(e) correction:

1
3 2
2 [(6,+ o) j (U +euy +...)2dy]
aT T T 0 OW ]W

1
- c2V~[(\76+£V¢>) J (u0 * el +...)2de
0 "y 7

0 v v v

eP

e ™ T R T T BT N W W WIS W L AN T 7 Y ) K . !
.,-'. O hAl " a‘.’n i 'b ) AL AL AN .:".‘l. Q AL AT M 0N ..l.fui“.\‘ 30..4 () .0".!,0.'! A C.l'.‘.i.l!‘ 'J ;‘l,:‘l.l!’h " W o,

.....

1
+ J h(u0+€u]+ ...,(6T+E¢T)(u0 teup + cee)s (V9+eV¢>)(u0 *eu, +..)..)5,T)dw

v

- -

Tl e w -

K g Sy
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We compare the above to (3.2) using (2.10) and determine that

1
P = - J (un h, + Yune ho + hyduy dy + 0(e) . ’
0 0T v 0 -V 1 Ow

This gives us a simple method to obtain higher order corrections to wave action.

In general, action is not satisfied to higher order (i.e., P # 0). However,

if ¢h is a dissipative perturbation and ezh] is not a dissipative perturbation,
then the integrals above vanish (since hv’ h. and h] are even), In this important f
case, our perturbation method has proved that wave action is dissipated in the f

same way as (2.10) to at least one higher order than would have been anticipated.

4, Modulated Phase Shift,

We restrict our attention to the situation in which eh is dissipative (and
thus odd in y) and ezh] is non-dissipative (and thus even in y). To obtain

an eaquation for the modulations of the phase shift ¢(X,T), we determine U, and

substitute it into (3.2). We will obtain a universal form. Because ug is even
in y and h is odd in y, we only need the even part of Ups Uy . From (2.4) and (2.5) 4
even

2
L(u ) = = 2(-wodr = ¢k Vd)u . (4.1)
]even T - Oww

EE

We can easily solve (4.1) by noting the result of differentiating (2.3) with

respect to E (keeping X, T, and k fixed):

I

-~

L(u, ) = = 2wwe U ’ (4.2) '
OE E OWW

o -

W N NN W LW W W Y W W AL TN 509 ¥ - o Y 4% 4% 4%t ) U OGN0
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since w(E,k,X,T). This idea was used by Luke [1] and Dobrokhotov and Maslov [4].

However, we can also take partial derivatives with respect to each component of the

wave number vector k. Since wV w = czg from (2.8), it follows that

L(Tug) = -2 (wTyw - CZE)UOW = 0 (4.3)

Thus, uy is independent of k (as is also clear from (2.7) and (2.8)) since
vkuo is even and periodic., [The only even homogeneous solution is not periodic

(see [1] or [5]).] By comparing (4.1) with (4.2):

‘(DT-VUJ'V

= k ¢
u = u . (4.4)
leven YE O¢
Thus, Uy can be obtained by operating on Ug*
even
u = Du (4.5)
]even 0

It is convenient and allowable (but not necessary) to include derivatives with

respect to 5 since Vku0 = 0. Therefore, from (4.4), we define D as the

~

following linear first-order differential operator in the slow parameters E and k:

A '¢T - ka-VQJ a
D = ™ EHUY (4.6)

where py is arbitrary since Vkuo = 0, However, we will discover that our

-~

derivation is simplified for a specific choice in which u # 0.
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We note that for any linear first-order differential operator

~tl
§ D J h(u s WU ’ku 9X,T)u le =
0 0 Ow ~ Ow ~ Ow

' ] ] ~ ~
‘ [ by ay+ ug hyuy+ by Gouy - Dwlug) + (kuy +D(k)ug )+ holdy
0 lw 0 Ow u'l v 1w Ow ~ lw ~ Ow ~

(4.7)

since derivatives in the fast variable y commute with D and since only the

{ even part of Uy contributes to the integrals. These are precisely the terms
) that appear in (3.2) if
D(k) = V¢ , (4.8b)

-~

which will greatly simplify our derivation. Thus, we will show only one u

) can be chosen to satisfy (4.8). From (4.6)

\ D(w) = -¢T - ka' Vo + p° ka

~

. D(k)

-~

"
T

Thus, (4.8b) is satisfied only if

L=V,

which fortunately does s¢':sfy (4.8a), so that

OO0 (0 et 0! ¢ 210 o (R ’ Wbt OO 1, 4 :
OO OO U ROV Ol l"l"l"'l'.."'..l':'l‘?‘I’. '.'-‘t‘-‘.'.‘,'.'.‘u‘.kl"-',\’!'a'. b'?‘l'. l'.‘l’.x.-'.‘0'.,'3‘!.0"l‘-.0'-‘O'f’l'?'l't‘t':‘u'!‘.'f‘l',‘o‘:'a‘.'a’.'l“.‘c”‘-““-‘?'" e




A "¢T - ka' V¢
D= we 3T Y% - (4.9)
(In 86, we show that D is the Taylor series operator in the parameters E and 5.)
Substituting u, = Du0 into (3.2) yields relatively easy calculations
A even

because D is a linear first-order differential operator. For example,

b (_uo)dw=z[u0 u by
0 Y 0 "y 'y
Thus, (3.2) simplifies:
2 (470) - <&+ (Vo)

1 (4.10)

+ 2 (6,DJ) - c2V » (veDJ) + D J hu, dy =0 ,
T T 0 ow

where again J is given by (2.11). However, from (4.8)

~

D(BTJ)

]

eTDJ + D(eT)J eTDJ + ¢TJ

vebJ + Ved

D(Ved) = veDJ + D(Ve)J

since again D is a first-order differential operator. Thus, the conservation

form of the equation becomes

A n ~ ]
% D(eTJ) - c2\7'D(\78J) +D j huy dy =0 . (4.11)
0 v

This is the partial differential equation for the modulated phase ¢(§,T) since

D is given by (4.9). This result is particularly pleasing; it can be obtained
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from the well-known dissipation of wave action, (2.10) or (2.12), by replacing

g%-by g% D, V* by V+D and the dissipation integral by D operating on it.

3 However, (5.11) can be further simplified by just operating D on (2.12):
3
N
0] ~| A
i A %S 205,
' D| hu, dy = - D == (64J) + c“DV-[VeJ]
o O oT VT
1%
d
‘. The above can be used to "eliminate" the dissipation term in (4.11):
.
' 2 D(6,d) - D2 (6-9) - c2v-D(V6J) + 2DV + (V6J) = 0 (4.12a)
i 3T M1 3T T . .
A
A
Therefore, we obtain & particularly simple representation:
b5 ~ 2 _
since DT z j% D - 05%’ and Dy = V-D - DV. Equation (4.12) has been derived
for rather arbitrary dissipation; its form is universal. The dependence on
dissipation is due to the dissipation of wave action (2.12). This result suggests
K)
? the following algorithm for obtaining (4 12): Starting from dissipation of wave
. action (2.12), replace aT by DT’ v by DV, and ignore the d1ss1pat1on integral.

Note that in one spatial dimension, D Dx’ which is as simple as DT Similar
results are valid for Korteweg-deVries type equations [7]. For clarity, we note

that after using (4.9) and VkJ = 0 [see (7.6)] the equation for the modulated
- phase shift ¢(5,T) becomes

s -
O o Al

'!

W
A
" ¢ N OO0 LR R g IR R TN KN AT POV
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PRAN SORACE
0= o )T 3 (-wd) + Vor -vk(-wJ)
2,707 - Yoo o
- ¢ v( m ) . =P (EJ) (4.13)
- c2 Jv2¢

Here, for example, g% refers to keeping only X fixed (not E or 5).
In the spatially independent case (c2 = 0), (2.1) is a nonlinear ordinary

differential equation and (4.13) becomes

do/dTy _
“g

d
o L

the adiabatic invariant for "arbitrary" dissipative systems that we [5] recently

discovered,

5. A Higher-order Accurate Dispersion Relation Depending on Averaged Energy.

In 54, we derived (4.13), the equation for the modulations of the phase
shift ¢(X,T). Here, we will show how this result can be obtained from two
intuitive physical principles (and justify these ideas mathematically). We
have already shown one of these physical principles: the wave action equation

2

(-wJ)T— c V-(EJ) +R =0 (5.1)

is valid to at least one higher order in an asymptotic expansion in powers of ¢,

if ¢h is a dissipative perturbation and ezh] is a non-dissipative one.

P -

[l X



We ~onjecture (and later verify) a second physical principle, one based !
on the averaged energy. We have defined via (2.7) a leading order slowly

varying energy EO(K’T) in terms of the leading order frequency w,, wave

number vector ko, and solution uo. We will first introduca more accurate

expressions for the energy. There are two different methods for doing this.

We can define a mathematical expression similar to (2.7):

g P Sy =gy

Enath = % [(6T4-5¢T)2 . cz(ve4-eV¢)2]u$ + V(u,X,T) (5.2a)

based on the complete freaquency, wave number vector, and solution., Alternatively,

we can use the physical expression for energy density: ;
l
_ 1 2 1 2 2
Ephysica] -2 (ut) "7 ¢ ﬁ&u) +V(u,XT),

which, using the multiple scale approach, can be rewritten exactly as '

2
1 2 ¢ 2
Eohysical = 2 [(67 + eopuy, + eupl® - 5 [(ve + evo)uy +emu]l® + V(u,X,T) . !

(5.2b)
It is clear that both equal E0 to leading order [defined by (2.7)]. It is

straightforward to show that both E and E , as defined above,

physical math
oscillate on the fast scale with a small 0(e) amplitude. Moreover, they differ

‘ at 0(¢):

- 2 2
Emath = ey (91“0 - ¢c°ve -Vuo) + 0(e“)

Y T s

Ephysica] -

|

- - ) R N [ : ; . :
P ORI IR S MO Yo K .‘n"-‘l':'l'u '\ 0 P e NI ,I.h Lah ; !0".0'&‘:
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4
Both oscillate on the fast scale, so that we might expect their averages Q
'| .

to be important. Since j Ug Yg dy = 0 and J Uq Vuodw = 0 by parity )
0y T 0 "y By

considerations, we note that _
<E > = <E >=O(52) o

physical math ? "

b,

] 7

where < > = J dy represents averaging over the fast nonlinear oscillation. ]
0

Thus, we can use either expression for the averaged energy and obtain identical ",

o

results valid to at least one higher order in powers of ¢. .'

By expanding either energy (5.2a) or (5.2b) to O(e) and by integrating, -

we obtain the averaged perturbation E]: '

]

Ey = (~w, o - 2k . V) J]uz dy + (w2 -c2k2) J]u u,dy + Fv u, dy i

1 0T ~0 o Ow 0 0 0 ow lw 0 01 ~

P

(5.3) b

ﬁv

This expression can be simplified using our results from §4., Only the even %:
A fy

part of Uy is needed in (5.3), namely from (4.5) uy = Duo. If we operate -
A even .
D on (2.7), we obtain 3
’;

;

2_ 2,2 - 2 2, ¢ A .

(wo-ck0 )u0 Duy + ug [w (0)'c'§0'D(L‘0)]+Vu Dug =D E; e

v v v 0 N

]

i

which, after averaging (integrating) and using (4.8), yields an expression :::

..l

for E; from (5.3): o

:*

) v Vo ::
A - - Wa * (]
Ey = DEy = — KO . (5.4) g
1 0 W ?
0 Y

E

t‘

oy

v

'l

0

X

3

" Wy > X GO, AL
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We will show that (5.4) is an immediate consequence of a simple physical
conjecture. The local amplitude-dependent dispersion relation (2.8),

wy = w[Eo(g,T), EO(E’T)’ X, T], is well-known to be valid to leading order,
Intuitively, we might expect that the dispersion relation is valid to at
least one higher order if both the more accurate wave number vector

50 + 55] (with 5] = V¢) and the more accurate averaged energy E0 + € E] are
used. We would then conjecture on the basis of physical intuition that the
perturbed frequency wy = - dp is obtained from the elementary Taylor series of

this highly-accurate dispersion relation:
wy = E1 wOE + E] . kao . (5.5)

Since this is equivalent to (5.4), we have proved the validity of a second
physical principle: the dispersion relation is valid to at least one higher
order if an accurate expression for averaged energy is utilized in (2.7).
Frequency changes are only due to the perturbed wave number vector and to the
averaged perturbed energy. This is valid only if the perturbation ¢h is
dissipative and ezh] non-dissipative (for otherwise we would expect further

frequency changes due to these).

We use this result to obtain the modulations of the phase shift by analyzing

the first variations of the wave action. Since (5.1) is valid to at least

one higher order, we will substitute 5 = k0 + ek] and w = wg +E:w] into (5.1),

where k] = V¢ and Wy T -4y Furthermore, we must use the more accurate integrals

R and J defined in terms of total 5, w, and u, However, it can be shown from

§4 that R and J are functions of E and the average energy:

...............
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Hy
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N
e
- 2 N
) 2 by
J-J0+EE]J0E+0(€). 5
since J is independent of k [see (7.6)]. In this way, (5.1) becomes A
h
2
= C Ve [(504’551)(\]0 + EE]JOE)] (5.6) :
o,
) .
*+ Ry * e(Ey R0E+l~<]-ka0) +0(e) = 0 .
The leading 0(1) terms cancel, and 1
many of the O(c) terms cancel since the partial derivatives with respect
to E and k of the leading-order wave action equation are also valid. Thus,
the remaining 0(e) terms must be in balance: 3!
%
(5'7) l‘
- E ek -2 avle =0, A
'
;
D
where the zeroth-order subscripts have been dropped. We call (5.7) the X
.l
equation for the variation of wave action. When the expression for averaged "
perturbed energy E, is used, (5.4), we obtain (4.13), the linear partial é

differential equation for the modulations of the phase shift. Since (5.7) is

-y}

the appropriate first variation of the wave action (5.1), it is in essence

»

w

) i"-!:'{‘l':'l‘:.,l‘ ‘:‘,:':f.‘:‘"'-':!h‘.‘ 4 ‘"l‘:fu‘.!é:‘:l’:!ﬁ!'-'!'ﬁ. n'th\?‘u‘.‘_ :‘
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the linearization of (5.1). Thus, the characteristic velocities of (5.7)
will be the same as those for (5.1), as shown in §7,

In summary, the equation for the phase shift can be obtained from the
correct higher-order accurate versions of the dispersion relation and the

! wave action equation,

6. A Linearization Princinle for D,

In §4, we noted that calculations needed for higher-order perturbations

] were simplified if we observed that Uy = Duo, where D is given by (4.9).
even
Here, we will show that this operator follows from an elementary understanding

of the linearization of the solution. For the Klein-Gordon equation, to

leading order, nonlinear oscillatory waves satisfy

UO = UO(ID;E; 595, T) ) (.6-])
where the usual dispersion relation (2.8) is satisfied

w = w(E,k,‘Z(,T) . (6'2)

If the perturbation is of the restricted class (dissipative) discussed
throughout, then higher-order terms do not effect the phase modulations 1
(other than via wave action). In this case and others, some of the higher-
order terms may be obtained simply by perturbing the parameters E and 5 in

(6.1) and (6.2). By this Taylor-series approach, )

K) OO PO . '\ N0 W0 W 9y e y ' L g ""
':'f'n 148, "! f'-"‘c',‘v Ny, ...! DI, :ll...'l'!.l ;‘!‘. KX h R .!'D‘?.Q » J. A 0 N 3, !‘ h a !‘! o by .'I.-.' » ' ) ‘ 8 l? !‘:‘J'") n.l‘?.&?’\ ,' vh ‘.‘
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g

o,

u =E,u, +kev, u (6.3) w3
]even 1 0E ~1 k0 e
*

w = By g kT (6.4) Q
ol

Here E1 represents (as in §5) an averaged perturbed energy. We again

S

")
introduce E] = V¢ and wy = = ¢, in which case (6.3) and (6.4) can be E'
combined to yield ~
R
A "

Uy =Duy (6.5a) N
even o~

o~

where y
_-F
B,
%
~ o=V 0OV, wy W
T - [T k')A . o

- o
-

agreeing with (4.9). As defined this way, it automatic-'ly follows that g
A A A Ld
D(k) = ky = Vo, D(w) = wy =-0¢;, and D(E) = E; . i
The equation for the modulations of the phase shift can be obtained 7%
by higher-order perturbations of the wave action equation and dispersion )
relation, These principles are easily extended to other systems, such as hy
KdV type equations [7], which has two amplitude parameters., Furthermore, "
the equations for the phase modulations of harder problems, such as nonlinear $
(W]
&
ones with multiple fast phases, should be analyzed in these ways as well, N,
If perturbations are not necessarily restricted, then the same type of g
)

linearized system will occur with nonhomogeneous terms (representing, for :ﬁ
Wt

example, non-dissipative effects). ﬂ
e

U

t

é
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7. Characteristic Velocities and Stability.

In this section, we first show that the characteristic velocities for
wave action are the same as the characteristic velocities for the modulations
of the phase shift. Then, we calculate these characteristic velocities for
nonlinear waves periodic in one-spatial dimension, We show that Klein-Gordon
waves are stable for hard potentials (i.e., wE/w > 0), while wildly unstable
for soft potentials (i.e., wg/w < 0). These soft Klein-Gordon waves will be
shown to satisfy an elliptic partial differential equation, and hence are not
well-posed as a slowly varying wave, in the same manner in which the Benjamin-
Feir instability arises for water waves and certain nonlinear Schrddinger
equations (see Whitham [3]). For this unstable case, nonlinear waves with
nearly one wave number and frequency will not persist. Instead, solitary waves
(if they exist) or multi-phased spatially periodic waves (if they exist) might
develop (Newell [8]).

The wave number vector, frequency, and amplitude of a nonlinear periodic
wave slowly evolves in space and time according to the coupled system composed

of the dispersion relation (2,3), conservation of waves

ke + Vo =0 , (7.1a)

and the principle of wave action

(cwd)y - Ve (k) +R=0 . (7.1b)

By considering the frequency w as a function of k, E, X, T, via the dispersion

VN - e

-ty Y 2 B w

P

r
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relation, the system (7.1) is expressed in terms of the fundamental unknowns

E and k:

kiT + Exin + "x *TW = - Bw/BX]. (7.2a)
' Ee(-wd)c * ke o ¥, (~wd) = c2V+k - c2(k « VE)J
T S S X X E
= cR- 2 (-wd) + ¢y, . (KJ) (7.2b)
3T ‘T W x " \2 » .

where [only in the rhs of (7.2)] =~, =r, and v, refer to differentiation
keeping 5 and £ fixed. Equation (7?2b) has been simplified somewhat since J
does not depend on k [see (7.6)]. By comparing equations for the wave action
(7.2) to the phase shift (4.13), it is apparent that the characteristic velocities
are identical.

We determine the characteristic velocities for slowly varying Klein-Gordon
waves in one spatial dimension, In this case, (7.2) becomes

kp + wEEX + wk X = 1.0.t. (7.3a)

2 2
(-U)J)EET + ("wJ)k kT - C JkX - C kJEEX = ].O.t. 9 (7o3b)
) where 1.0.t. designates lower order terms, which are not necessary to calculate
the characteristic velocities. Equations (7.3) form a system of quasi-linear

é first-order partial differential equations. By the usual method of diagonalization

(described and calculated by Whitham [3]), we obtain the two characteristic

velocities

\ ", P . f"\f TR, [ R IPETEE B A A A ‘}-»') [} ‘_\ R ] w» 'y \
R e S R S S A R e i S e o (e e e S
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LA () ' (7.4)

where ww = czk has been used to derive this result as well as
(F - PRI +uegd = 1 (7.5)

The latter equation, (7.5), is derivable from conservation of energy,

1 "
T2 - A = [ (E-v)du = (wP- B2 | ™z (£ du
2 0 u 0
qnin
(7.6)

when the dispersion relation (2.8) is used. From (2.8), w2 - czk2 only depends

on 5, T and E. Thus, J does not depend on 5, a result we have found useful
occasionally in this paper.

The characteristic velocities, given by (7.4), determine the stability
and well-posedness of nonlinear periodic waves for the Klein-Gordon equation.
The sign of wE/w is important, since J > 0, Note that wg is determined from
the potential [see the dispersion relation (2.8)]. If wg/w > 0, which we
define as corresponding to hard potentials since the frequency increases with
the wave amplitude or energy, then the nonlinear periodic waves are stable.
The initial value problem is well-posed (see [5]). However, if wg/w < 0,
corresponding to so-called soft potentials, the velocities have a non-zero
imaginary part, implying that the partial differential equations are elliptic.
In this case the partial differential equation is not well-posed as an initial

value problem; the assumption of a slowly varying periodic wave is not valid.
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The periodic wave would immediately be wildly unstable, yielding some other
type of solution. Thus, the nhase shift analysis in this paper is applicable

only for hard potentials (wE/w > 0).
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Abstract

The phase shift and corresponding small frequency modulation for weakly
dissipated nonlinear oscillators with slowly varying coefficients is calculated
for the first time. This extends and corrects earlier work by Kuzmak, Luke,
and Dobrokhotov and Maslov. A new adiabatic invariant is derived, the ratio of

the perturbation of the frequency to the derivative (with respect to energy) of

the amplitude-dependent frequency of the nonlinear oscillator.
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1. Introu.ction.

Kuzmak [4] analyzed the lnng time effect of weak damping on strongly
nonlinear slowly varying oscillators. In his important work the leading order
solution was obtained. However, it was unjustifiably assumed.that the phase
shift of the oscillations was constant, and thus, that the freguency was not
perturbed. Since that work, refinements have been suggested ([1],[2],[3],[5]).
Luke [5] developed a more systematic approach to the problem using the method of
multiple scales that allowed the calculation of higher order terms. His paper,
nowever, only investigated the use of the method on the nonlinear Klein-Gordon
equation and did not examine the dissipative perturbations discussed here. He
correctly observed that the phase shift satisfied a second-order differential
equation, one solution of which is a constant., He did not, however, state the
differential equation or the form of the second solution. This has led to some
misconceptions among some authors about the phase shift. Dobrokhotov and Maslov
[1] examined the same (non-dissipative) equation as Luke [5]. Using some

excellent new ideas, they determined a differential equation for the phase shift,

Unfortunately, they inadvertantly omitted a term in their dissipationless analysis
which caused an error in their result. In this paper, we will derive the correct

second-order differential equation for the phase shift and do it in a simpler

manner, including arbitrary damping. Ve also obtain the solutions to this equation

and show how it Teads toa new and unexpected adiabatic invariant for dissipative eaquations.

In §2, we analyze second-order nonlinear differential equations of the form

~N)

(=¥

renly, . v v =0, (1.1)

[« 9
o+

weLEA s

with coefficients varying on the slow time T = e¢t. Here V(y,T) is a nonlinear
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potential that admits periodic solutions when € =0. The term h(y,g%-,T) is
assumed to be odd in dy/dt in order to represent an arbitrary small nonlinear
damping. This generalizes the approach of Kuzmak [4] who only included quasi-
linear damping. We first quickly show well-known results. To leading order,

y = y0(¢), which is even in y, where

[ (T%yy  +V lypuT) =0 . (1.2)

v

Thus, the energy E(T) is slowly varying
P 2 2 _
703Ny )" + VlygeT) = E(T) . (1.3)

Here , is the fast variable, where =-i§Ll + ¢(T). We will eventually determine
the phase shift ¢(T). lLuke [5) showed the period in v must be constant and hence
the frequency «(E,T) satisfies

]-]
SAE,T) = 8Y(T) = j 2 fyomax ¥ ; , (1.4)

'3
BRI GUR(PR ) by

where Yo
min
fast nonlinear oscillator. After performing a perturbation expansion,

(E,T) and Yg (E,T) are, respectively, the minimum and maximum of the
max
Y =Yg + €Y1 + ..., we obtain
Lly;) =R, , 1=1,2,3,... , (1.5)

where L is the linearized operator resulting from (1.2) and where R, is the

corresponding right-hand side described in more detail in §2. By the Fredholm

AP LS
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alternative (for (1.5) with i=1), equivalent to eliminating secular terms, we

obtain Kuzmak's result [4] that the action I is dissipated:

Fto=0, (1.6)

where the action is twice the average value of the kinetic energy divided by

the frequency:

1
1(E,T) )

w(E,T) JO

(.YO dy (.7
Y

and where D is energy dissipated over one fast oscillation:

D = f] h(ygswyg » T)yg dv . (1.8)
0 v v
Equation (1.4) and (1.6) determine E(T) and 8'(T). If there is no dissipation,
then the action I is conserved (to this order) and is the well-known adiabatic
invariant,

Next in €2, we determine the second-order differential equation for the
phase shift ¢(T) by examining the O(e) terms of the exact version, developed

by Whitham ([f] and [10]), of the action enuation. Qur new result is
=0 . (1.9)

Our method only requires a calculation of Yy and hence is much simpler
than the usual elaborate procedure of applying the secularity condition at

0(52). We relegate this to Anpendix A, correcting Dobrokhotov and Maslov (1.
n (1.9), « is the rate of change of frequency with respect to energy keeping

T fixed via (1.4). Thus, the nerturbation of the modulated frequency d¢/dT
divided by w¢ is a new adiabatic invariant. FEquation (1.9) easily determines

¢(T) from initial conditions as is discussed in §3.
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Eauation (1.9) is unexpected. In general, perturbations effect the
functional form of the dependence of the frequency on the amplitude. However,
in §4 we show that for dissipative nerturbations (limited to the ch term in
(1.1) which is odd in dy/dt) the variation of both frequency, wy = do/dT,
and action are only due to changes in the averaged perturbed energy E]. For
example, it is shown that wy = E]uT » which uses the leading-order amplitude
dependence of the freauency. Thus, (1.9) states that the averaged perturbed
energy does not vary. Furthermore, in §4 it is shown that (1.9) results from

considerations of the linearization of the equations for action and frequency

with respect to changes of the averaged energy. We believe the simplicity

of (1.9) is due to damping primarily influencing the amplitude, not the frequency.

However, the result (1.9) fundamentally depends on the damning through the
dissipation (1.6). We reiterate that action is not an adiabatic invariant
but ¢'(T)/uE is. Thus, (1.9) completes the description of the leading order
problem for long time; it shows that &(T) is not necessarily constant. For
other types of perturbations, the phase shift will satisfy nonhomogeneous

versions of (1.9),

2. Strongly Nonlinear Oscillators.

We consider the second-order nonlinear differential equation which describes

strongly nonlinear, slowly varying, and weakiy damped oscillators:

(%)

Levenly, Eo1 + v =0, (2.1)

a

t

where V(y,T) is a nonlinear potential depending on the slow-time scale T =¢et.
We assume the potential admits periodic solutions to (2.1) (for all fixed T) on
the fast time scale t without dissipation (i.e., when ¢=0). Also, in order for
the small perturbation ¢ h to be dissipative, we assume h(y, dy/dt, T) is odd in
dy/dt. This allows negative dissipation as well as situations such as the

van der Pol oscillator in which both positive and negative dissipation may be

present simultaneously.
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We use the method of multiple scales with the fast time scale y and =

slow time scale T: F
v =80 L gm) 3
Tret , ’
so that, for example, ﬁ‘
YoM reeMIY Y

v v

In the analysis to follow, we will rederive 6(T) in the standard way and correctly

24
PR

derive the phase shift ¢(T) for the first time. In this manner, (2.1) becomes 5
%

exactly 4
2 " n ::

(8" +eo") y,, + el(6" + coly, + 2(8" + eo')y,r] + eh 2

(2.2) 4

2

+ + ,1) = '
€ ‘yTT Vy(.Y ) 0 A

Nt

We now introduce the perturbation expansion "y
'I’

Y(T) = yg(0aT) + ey (0,T) + efy,(u,T) + ... :

4

)

rd

It is convenient to note that {
.

2 ¢

U (aT) = ¥ ygeT) + (eyy + €2,V (yoT) + €2 v (yo,T) + 0(e%) ;

yv? yo’ 1 2 yy¥o? 2 yyyvo’ b,

4

h(ysvsT) = hly,8'y + ct'y + eyq,T) x

\|

- o ' 2 .

= h(.Yo’a .YO WT) + E[hyy] + hv(¢')'0 + yOT +0 .y] )] + 0(e”) :

v w ‘P \l
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where v = dy/dt, hy z hy(yo,e yow,T) and h,

' )

The result of substituting the perturbation expansion into (2.2) is the

nonlinear oscillator equation

(6" (M1, +V
vy

y(YgeT) =0

and its higher order perturbations

L(yk) = Rk . k=1,2,3, ... ,

2
where L

oY
(2.3) and

Ry = -26'¢'y - 8"y, - 20'y - h(yns8'yn »T)
1 0, 0, 0,7 0*° Yo,
R2 = 29'¢y~| - e"y] = 29')'] - (¢')2y0
11 - ' - ]
" Yo, "o - 'y -3 Vyyy(yO,T)h

(2.4)

(8')2 Ji?-+ Vyy(yO,T) is the linearization of the nonlinear operator in

We now examine the 0(1) equation, (2.3). Multiplying by Yo and integrating

once yields the conservation of energy equation

5 (8925 12 + iy D) = E(T)
]
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where E(T) is slowly varying in a well-known way that we will rederive.
ay
(2.5) defines curves in the (yo, 7%9) plane for fixed T. Because of our

Equation

assumptions concerning the potential, these curves will be closed and Yo

will be periodic in y, oscillating between Yo . (E,T) and Yg (E,T) with
min max

V(y0 ,T) = E and V(y0 ,T) = E. Since only even derivatives with respect to
min max

y occur in (2.3), we can define y, without loss of generality, such that yo(w,T)

is an even function of y, and so that ¢ = 0 corresponds to yO(O,T) =Yg
ayo min
and T (0,T) = 0 (see Figure 1),
ayo

Yo . (E,T) 3

-
.

Figure 1: Phase plane solution of Yo for
fixed E,T.

Using quadrature on equation {2.5), we obtain

fyo(WsT) d.yO

i}
Yo_. /2 [E-V(yyTl®
min

v=o

The period of the oscillation in the fast variable is equal to the loop integral

around the entire curve, or equivalently:

dyo

P(T) = 28" (T) jyomax

— L (2.6)
Yo 2 LET) = VlygT)]
min

]

»
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If P does depend on T, as is written, then as Luke [5] showed

jL(y (y + nP(T),T)) =n & Yo (0,T) + y~ (0,T), which is unbounded for large n.
57 Yo ar Yo, 0

Thus, %% = 0 and the period is constant. The period may be normalized to any

convenient constant, and we will choose 1 (although 27 is often used):

d V-1
€T oM = 12 [0 (E.t) 0 ‘ (2.7)
AR - ) Jyomax(E’t) ’/7 [E(T) = V(yoaT)]lz j ) )

min

The actual period of the oscillation (to first order) in the real time t is
1/e*(T) so we are justified in referring to 6'(T) as the frequency. We have
introduced the notation w(E,T) because partial derivatives with respect to E
(keeping T fixed) will be important. (Note the difference between 3w/3T
and dw/dT7 = 3w/3T + 3w/3E dE/dT.)

In order to examine higher order equations, we first need
to obtain some results on the linearized operator. By taking the derivative of
equation (2.3) with respect to v, we find that Yo is a homogeneous solution of
L(u) = 0. As was stated before, yo(w,T) is an evgn function of y, which means
that Yo is an odd, periodic homogeneous solution. Since Yo is periodic,
L(u) = 5 is equivalent to a Hill's equation. From Floquet theory the form of the
second homogeneous solution is Uy = A(T)wy0 + K(y,T) where K is even and periodic
in y with period one. Luke [5] showed that‘A(T) #0if %%-f 0 in equation (2.6)J
Thus, in the usual case, yo| is the only periodic, homogeneous solution. In
order for solutions to (2.4§ to be periodic, the Fredholm alternative states that
the right-hand side of (2.4) must be orthogonal to all periodic homogeneous

solutions of (2.4). This gives the condition

]Note that in the linear case, P/3E = 0 for all E and there are two periodic
solutions: c¢os 2ry and sin 2-..
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JOYO Rk dy =0 . (2.8)

This is equivalent to eliminating secular terms in the usual way.

For k = 1, (2.8) becomes

1 | 1
2
f2w¢'y Yo dy +2wfy y dW*HTJ Yo v
0 0470y 0 Oy1 0y 0o 9

1
+Jh(y.wy »T)yy dv =0
0 0 OW Ow

The first integral is zero since it is the integral of an odd periodic function

over one period. The next two integrals may be combined to give:

1

1
d 2
——[w(E,T)J y dw]+jh(y oy~ Ty du =0 . (2.9a)
dT 0 OW 0 0 OW OW

This is a well-known result [6]. We define the action, I(E,T), to be twice

the average value of the leading order kinetic energy divided by the leading

order frequency:

1 Y 1
I(E,T) = wl(E,T) fo ¥ dy =2 f "XVZIE - iyt dy, » (2.10)

Ymin

(g

using (2.5) and a change of variables (i.e., integrating in the phase plane).

We also define the dissipation (the energy dissipated over one fast oscillation):

)
v it

Equation (2.9) becomes

v : B .\ AN
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dl
ET + D=0 . (2.9b)

If there is no dissipation, the action is conserved (to this order) and is the

well-known adiabatic invariant. If h = h(T) dy and thus h{y,,wyns »T) = H(T)(uy s
dt 0> Yo, 0,

then (2.9b) simplifies to

dl

ET + h(T)I = 0 s

TA
-/ h(s)ds
e 0

[

which ([2],[4]) has the simple solution I(T) = I(0) . In any case,
however, the only unknowns in (2.7) and (2.9b) are w(E,T) and E(T), so that
these equations provide a closed system for w and E.

In order to find the equation for ¢(T), it will be necessary to examine E
higher-order terms and thus to know something about the form of y](w,T). By

taking the partial derivative of equation (2.5) with respect to E, noting that D

By direct substitution, we also find

w(E,T), we obtain L(yOE) = -2uwpyy -
Yy

that L(yy, ) = 2cg2y . Therefore, y, = wy, * weWy, 1is a homogeneous .
0 0, H 0 E770 ,

v v E v A

solution to (2.4), which is even in y. Notice that Yo is even and periodic,

E
and thus, Y is in the form predicted by Floquet theory. (Furthermore, we 4

note that there are two periodic solutions if wg = 0. For the remainder of this
paper we assume wE(E,T) # 0 since we believe that important cases correspond

to the period in real time t being a monotonic function of the energy.) Using h
the facts that Yo is even and h(y,v,T) is odd in v (which means h is odd in y)

allows us to separate R] =-2.: Yo * R1
. v odd

that are odd in y. Since L(.yO ) = 2y2y0 R
. Yy 9

where R] consists only of terms
odd 5

PTATIISINA

Y,
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vy ==y, +y, , (2.12)
P v Podd

where a specific odd part of the particular solution may be obtained by

reduction of order

Y0
y =—£
1 2
Podd ©

We will not need this expression for y]p .
odd

To obtain the general solution, we now include the two homogeneous solutions,

yg and y, given above: :
Y K

- e
A C](T)yo + B](T) (wyO + ‘UEW.VO ) " 4))’0 + N .
y E Y w pOdd ‘

In order for Y3 to be bounded, the coefficient of Wo must be zero; therefore,

1%
B](T) = ¢'/wa, in which case
¥1 2 G(T) yg # f— Yo * N3 . (2.13)
v Tt Podd i

[
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In Appendix A, we show how to determine an equation for ¢(T) by
eliminating the secular terms in the 0(52) eauation, (2.8) with k=2. Here,
we obtain the desired result in a simpler way; we use the periodicity
(secular) condition to derive an action eauation valid to all orders.
Whitham [10] showed that an exact equation for action may be obtained by
multiplying (2.2) by Y and integrating over i, using the assumption that

y is periodic in . (with period 1):
d F( | ! (] (
Sl (e es d. |+ hiy,v,T)y de =0 . 2.14
dTI_ ) ‘yL | JO y )yw v ( )

This is eauivalent tothe usual secularity conditions at all orders. 1In
particular, to leading order this yields (2.9). More importantly, the

phase shift will be determined by the O(e¢) terms of (2.14):

1
d N ' 2 v
IF [ 0. V. dvt e Joyow dy:]

1 1
r ' -—
E‘ Y]"’h ¢‘.Y0 +y0T+8y]w)"y0'dw+johy]\b dg = 0
(2.15)

Since hv is even in ¢ and hy is odd in ¢, only the even part of 2 is needed

n (2.15). From (2.13)

o' (T
2 = Yo s (2.16)
even “E E

1
and thus (since J

h, Yot Yo d. = 0 from parity considerations) eauation
n -

(2.15) becomes
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4 ot [ e L [y 200
ZE_Jyyd:+ syt dy
aT o Y0 o, ar Yo,
] 1
+g—f (wyy *ueyg Wohy (2.17a)
E’0 Vg vy

1 1
4 el 2 2 4. ¢ 3 .
or g7 -3¢ (v Joyov dv) ]+ == Joh(yo.uyow,T)yowu 0 . (2.17b)

Equation (2.17a) is equivalent to (A.2), derived from the secularity condition
at 0(52). Thus, the elaborate calculations in Appendix A are not necessary
to obtain the phase shift. In fact, we do not even need an expression for R2.

Using the definition of action (2.10) and dissipation (2.11), we obtain

d o' (T (T _
T [:E(é',—)ﬂ' IE] + o ET DE =0 . (2.17c)

However, action is dissipated via (2.9b), D

-dl1/dT, so that (2.17c) becomes

1]
o
-

d o' (T S (T) 3 dl
Ef[ui(é-e '%') IE]-wE t17 3¢ (a7

which is equivalent to

d (T -
IE'd_T[u,E 7l < 0

[
.
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Since from (2.10) I. =

it follows that

it o @ i

Thus, (2.18) defines a new adiabatic invariant. Note that this is valid for

nonlinear oscillators with rather arbitrary (small)dissipation. An alternative

-1
expression occurs if we observe that, from above, wg = ;I . Here we is
I
3
determined from (2.7) (do not differentiate under the integral sign), where we

note E(T) has been determined earlier from the coupling of (2.7) and (2.9b).
We refer to ¢(T) as the phase shift and ¢'(T) as the perturbation of the
modulated frequency. In the introduction to this paper we have described the .
meaning of (2.18). In particular, ¢(T) and ¢'(T) are now easily determined
from their initial conditions.

Notice that the only unknown in (2.17) or (2.18) is ¢(T). The arbitrary
coefficient of the homogeneous solution in (2.13), C](T), has dropped out of the
equation as Luke showed [5]. We note that it is possible for ¢'(T) = 0, as
Kuzmak [4] assumed, but in general (2.18) is a second-order equation. It is !
important to recognize this for the arbitrary initial value problem (see §3).

We can determine Cy by looking at the 0(52) terms of the action eauation (2.14), '
Proceeding in this manner, we can find Ck by looking at the O(ek*]) action

ecuation. It is very imnortant that this orthoqonalityv candition not involve

CK+]’ since P s does, in general, involve Yisqe Luke [5) showed this to be

true for the non-dissirative case using secularity conditions, and it is easy to

show for the general case. As is the case for ¢(T), we would find that Ck(T) 3

rv‘r '.'~~\~."
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satisfies a second-order equation.

3. Initial Value Problem

The importance of the new adiabatic invariant lies in the relevance of

¢'(T) (in particular ¢'(0)) to the initial value problem for (2.1):

y(0) = ag *aq ¥ ezaz + ...

n.lkg
ﬁ

_ 2
(0)‘60+EB]+682+-.0

with 2 and 81 given. By using the multiple scale assumption and substituting

the asymptotic expansion, we obtain

y1(¢(0),0) = ai (3.23)

(o) X0 - ¢ (3.2b

21(0) 52 (6(0),0) = % .2)
ay . Y. _ oy

5'(0) =1 (6(0),0) + 6'(0) ==L (6(0),0) + 1 (6(0),0) = 8;

(3.2¢)

since y(0) = ¢(0) because (0) = 0. To leading order, (3.2a) for i = 0 and (3.2b)
form a closed system for ¢(0) and E(0), since from (2.7) 6'(T) can be written

as a function of E(T) and a known function of T (8'(0) = w(E(0),0)). E(T) solves
a first order equation (2.9a) or (2.9b), and therefore (3.2a) and (3.2b) determine
E(T) uniquely (and ¢'(T) = .(£,7)). In addition, 6(T) is uniquely determined

by integration since 8(0) = 0.

NSNS
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However, #(T) solves a second-order equation and the information for the
unique determination of ;(T) is, as yet, incomplete., Thus, we consider the O( )
terms for the initial value problem, (3.2a) and (3.2c), both with i=1, We

substitute the form of R from (2.13) and obtain:

(3.3)
In this form the righthand side is given or already determined. This linear

system of equations for C](O) and ¢'(0) has a unique solution if and only if:

Yo, (3(0),0) |
vo (:(0),0) —TETaToT

21 (0 £ 0

|
| + yy (2(0),0)
| :

This determinant is just :ETE£57757 times the Wronskian of the two homogeneous
solutions Yo and y, of the linearized operator evaluated at y = ¢(0) and T=0.

By different:atinq (2.5) with resrect to E, the Vronskian eauals 1/w. Since

these two solutions are linearly indenendent, the determinant is non-zero and a
uninrue solution for &'{(0) and C](ﬂ) exists. C]'(O) (necessarv since C](T) satisfies
a second-order equation) and CZ(?F may then be determined in a similar manner from
the P(;z) condition and so on. Thus, the method gives the solution for arbitrary

initial conditions. Note that the ¢*{.) initial conditions are necessary to deterrire

2'(0) and hence to determine the nhase shift ¢(T) and the small frequency modulaticn
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='(T) corresnonding to the leading order long time solution.

This is not surprising

as perturbed initial conditions change the energy and hence the frequency.

Using the expression for y, , we obtain from (3.3) and (2.18)

Podd
e
S e a2 v i
= = =7 =qar | w | Yg dw | - wyy +J“y dy .
0% ) R (1) o) IR Jo 0, 070; * Jy 0,
(L _ )
r (3.4)
M e M "1’0,,,} T=0
W W

v=¢(0)
To simplify this, we differentiate the energy equation (2.5) with respect to T

and intearate it from . =0 to .:

L2

dE 1 [¥
o . _y d; - u.y Y = -
0 0 0 "0

’jT aT‘(,_j)O derJ,' . (3.5)

|8
I
w

Evaluating (3.5) at . =1, yields the following exnression for dE/dT, where

the action equation (2.9) has been used: K
1 ] 9
de _ 1 f )
=, Vpd.-. hyydl (3.6) :
-0 ‘0

By substituting (3.6) in (3.5) and by noting that the lhs of (3.5) appears in
(3.4), we obtain

1
. . 1,V 6(0) Vv
10 N N Y e SIS PR .
= - :<¢0) __-hy dv' _—-hy d¢ )
KA,E ,T WEEO ,O E JO ! Ow 0 W 01,') v
+ w(Byyn - 0y, ) (3.7)
170 1 va T=0 '

Equation (3.7) is significant. It determines the perturbed frequency and shows how )

it depends on the dissipation, {

I
‘

and the perturbed initial conditioﬁs, a, and B]. For example, a simpler expression

hy0 d ., the slow time-dependence ofthe potential, VT’

results if 4 = 61 = ) and there is no dissination (h=0); the frequency changes are W

only due to a time-denendent notential., If in addition, V; = 0, then o(T) is constant,

as is clear since in this snecial case there is no slow variation of the soluticn.

»
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4, Discussion: Higher-order Frequency and Averaged Perturbed Energy.

The leading-order equations for the slow variation of a nonlinear oscillator
are the amplitude-dependent frequency (2.7) (based on the leading-order energy)
and the action equation (2.9). Our result concerning the phase shift is best
understood by considering higher-order expressions for both. In this section,
we note that changes in the frequency and action equations only result from
the linearization of them due to perturbing the averaged energy, if the
perturbation is dissipative, as we have assumed.

In Appendix B, it is shown that the frequency (2.7) is valid to 0(¢)

if the average perturbed energy £ is utilized in (2.7). Thus, the Taylor

expansion of the frequency « = «(E) vields
(;.,‘-I = E-' ".L‘E Iy (4°])
where E] is the O(c) perturbation of the averaged energy and wy = de/dT is

the 0(e) perturbation of the frecuency (the frequency shift or derivative of

the phase shift), Here, frequency changes are only due to the averaged

energy changes, and thus, we might reason intuitively that (4.1) should be

valid.

Equation (4.1) is quite significant. For example, the leading-order

nonlinear oscillator satisfies

Yo = Yolts E(T), T)

PR R,

We expect that some of the perturbed solution ¥y results from changes in E,

In fact,
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Y1 =k
even

y (4.2)
1 0E

since from (4.1) E, = d¢/dT/w., showing that (4.2) is equivalent to (2.16).
1 E

Thus, (2.16) or (4.2) corresponds to the response due to perturbed average

energy levels.

Furthermore, (4.1) leads to an understanding of the phase shift, Since

action is valid to higher-order from (2.14) and both action and the dissipation

depend on the averaged energy E [7], it follows that

ad.r I(E,T) + D(E,T) = 0 . (4.3)

To leading order, this yields (2.9). Higher-order terms may be simply

obtained by perturbing the averaged energy:

d -
(B, ) + €, Dg =0 . (4.4)

However, the partial derivative of (4.3) with respect to E is also valid.

Thus, (4.4) becomes

d _
lIg g7 (E4) =0

This shows that the averaged perturbed energy E] does not vary. Using (4.1),

we obtain the adiabatic invariant,zg- d¢/dT:
E

d ,de¢/dT, _
rid (_QL___) =0

(4.5)
“E
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Our results are only valid for the dissipative perturbation e¢h . For non-
dissipative perturbations or O(ez) dissipative perturbations, (4.5) becomes
a non-homogeneous equation for d¢/dT.

Recently, we have extended the ideas of this paper to obtain the modulated

phase shift for oscillatory solutions of nonlinear dispersive waves
([73,[8], and [9]).
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Annendix A: Hiaoher-order secularitv condition, :;
’

In this appendix, we show that the higher-order action equation (2.15) 2

is eauivalent to the result of eliminating the secular terms in the 0(52) equations: -
"'

J] (a.1) 2

Royg dy = 3 . AT ‘

0 2 OW s

rl 2 '}_
The term J Vo o (YrasT)y:y~ dv in (A.1) appears to be difficult to calculate Ny
0 yyyo ] Ow )

-("
since y, is given by (2.13). However, if we integrate by parts, recall the e
definition of L, and then use L(y]) = Ry» we obtain o
.\

~

(] ) 1 ~3

PV (Y T)y Ty dw=-2jv (YgsT)yqyy du .

jo yyy 0 1 0‘»’/ A4 0 ]'Iw ::

1 2 5

= - ZJ[L(Y])'WY] ].Y'I dy i

0 Wy o

>

1 b

dw

=+ 2 [ [2we'yy +q7Yy *2wg *hlygewyg »T) vy 4 K

0 %, 870, 0, oo L ¥

:..

N

where the periodicity of many expressions has also been used. In this manner, ’;‘
)
from (A.1), we cbtain o
3

] 1 N

3 d %

2¢"wf = (yq ¥y ddu+ 2—[wa yy dyl N
R T o707y N

1 LI 1 >

+ J h(yot“-‘)'o 9T).y'| dy + ¢' JO(‘YO ) hvdw tuw Ly] yo hvdw '\r

0 v v vy o

.h

j] d ]( )2 ] '{"

*l Ygyh dw+d—T[¢‘fy0 dy X

()2 [ ! :
+¢'Jyyd;+yyhdw )

o Y0 Y0 %" ] Yo Yol .

J] I§

+ 1 ¥Ya Yo d. =0 . (A.2) :
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This corrects an error in Dobrokhotov and Maslov [1] due to an omitted term.
The first integral is exact and vanishes due to periodicity considerations.
The underlined integrals vanish from parity considerations. Thus, (A.2) is

equivalent to (2.15) derived from the higher-order action equation,

Apnendix B: Averaged Perturbed Energy.

It is useful in interpreting the phase shift to show that (4.1) is
valid, that is, to evaluate the averaged perturbed energy. The averaged

energy is defined to be

1 \
- 1 [(dyl2 §
E = JO [ 4t + V(Ay,T{] dy . (B.1)

~|

When y is expanded and the multiple scale assumption is used, the leading-
order satisfies (2.5) with E renlaced by EO' If E, is defined as the 0(g)

perturbation of the averaqed energy, then from (B.1) we obtain

= ] . '2 )
Ey = JO I yO:(e Yio t ¢ Yo, fYor - (ev) y]yOww:} dv , (B.2)

using (2.3). We note that only 2 is needed in (B.2), and thus, using
even
parity arguments and (2.16), we obtain

E] = d:/dT/@E s

proving that (4.1) is valid. In a similar way it can be shown that (4.3) is

valid to one higher order.
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Abstract -
Nonlinear dispersive oscillatory waves are analyzed for Korteweg-deVries .

-~

type partial differential equations with slowly varying coefficients and arbitrary N
small perturbations. Spatial and temporal evolution of the amplitude parameters .

are determined in the usual way by the possible dissipation of the wave actions

for both momentum and energy. For dissipative perturbations, both wave actions i
are shown to be valid to a higher order. Thus, the first variation of the wave )
action equations is used to derive equations for the slow modulations of the A
phase shift, It is shown that the phase shift satisfies a universal set of two f
soupled equations, each independent of the small dissipative perturbation, i,
:.‘
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Introduction

Kuzmak (4] made fundamental contributions to the method of muitiple scales
in his analysis of the effects of weak dissipation and variable media on strongly
nonlinear oscillators satisfying ordinary differential equations. The slowly
varying frequency was shown to equal the local frequency, depending on the
amplitude. Kuzmak [4] also obtained the differential equation for the slowly
varying amplitude (a nonlinear generalization of the dissipation of action). For
strongly nonlinear dispersive waves (but without dissipation), satisfying the
Klein-Gordon equation (a partial differential equation) with variable coefficients,
Luke [5] obtained the dispersion relation and the partial differential equation
for the spatial and temporal slow evolution of the amplitude. Whitham [6]
generalized this by intrrlucing the concept of wave action, enabling as an example
the calculation of the effects of variable media and weak dissipation on the
cnoidal waves for the Korteweg-deVries equation.

Kuzmak [4] assumed the phase shift was constant, while for a dissipationless
system, Luke [5] claimed that the phase shift could be constant, an important
distinction that has been very understandably overlooked by many. Unfortunately,
when Dobrokhotov and Maslov [2] reinvestigated this issue they made a critical
error. Although they obtained a second-order equation,

their results were incorrect, Furthermore, they only
analyzed unperturbed dissipationless systems.

Quite recently, Bourland and Haberman [1] analyzed nonlinear oscillators
with dissipation. Using some of the good ideas of Dobrokhotov and Maslov [2],

a simple second-order ordinary differential equation for the phase shift was
obtained. Most significantly, it was of universal form, independent of the type
of dissipation. Furthermore, there was a simple adiabatic invariant, enabling

the phase shift to be determined for arbitrary linear or nonlinear dissipation.
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The simplicity and generality of the phase shift for nonlinear oscillatory
ordinary differential equatiors strongly suggested that similar results would
be valid for weakly dissipated nonlinear dispersive waves propagating in a
slowly varying media. Efforts were simultaneously undertaken for Klein-Gordon
and Korteweg-deVries type equations; each guided the development of the other,

For the Klein-Gordon equation, the dissipation of wave action is fundamental,

in one spatial dimension,

[$%] Le¥)
><
1}

$+8- -, (1.1)
where 1 is the wave action, g is the flux of wave action, and R is the
dissipation. Haberman and Bourland [3] showed that the phase shift satisfies

the same partial differential equation, independent of the type of dissipation:

D;I+ D=0 , (1.2)
where 6 is the Taylor series operator
resulting from changes in the wave number and averaged perturbed energy.
In [3] it is shown that D depends on the phase shift in a linear way, so that
.2) is a linear partial differential equation for the phase shift. Once

A

(1
D has been determined, (1.2) can be obtained from (1.1) by replacing g% by D

T
and g& by BX and by neglecting the dissipation.

In this paper, we analyze Korteweg-deVries type equations for a variety of
reasons, It is an important type of equation because of its frequent occurrence
in physical problems and it can have great mathematical interest in the
remarkable cases where it is integrable and known to have exact multi-phase

periodic solutions. However, we investigate slow variations because nonlinear

periodic waves satisfy a third-order equation (not self-adjoint) which is
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thus more difficult than the corresponding problem for the Klein-Gordon equation.

For Korteweg~deVries type eguations, there are two independent amplitude parameters,
while for the Klein-Gordon there was only one,

In 52, the method of multiple scales is used to analyze Korteweg-deVries
type eauations with arbitrary small perturbations. Two equations are derived
representing the well-know dissipation of wave action for momentum and energy,
both in the form of (1.1), with I, q replaced by Ii’ q; for i = 1,2. In 83,
higher order terms are shown to be obtained from the first variation of a form of
the wave action equations, an apparently general result since it is also valid
for the Klein-Gordon equation [3]. In §4, one operator 6, depending on the
phase shift, is determined such that (1.2) is valid for both wave actions. In
this way, the phase shift for Korteweg-deVries type equations is shown to satisfy
a coupled system of partial differential equations (1.2) of universal form,
independent of the type of dissipation. The equations (1.2) are easy to express
once the operator 6 is determined. In §5, we show that these results correspond

to the linearization of the dispersion relation and the wave action equations with

respect to perturbations of the wave number and the averaged values of the amplitude

parameters. The operator D is now the Taylor series operator in these parameters.

2. Korteweg-deVries Type Equations,

In this paper, we analyze nonlinear partial differential equations with

slowly varying coefficients of the Korteweg-deVries (KdV) type:

1

‘ 2
ut + ? QUU(U’X,T)UX + 3 (

x’T)uxxx

2

= ~¢ h(U,vaUx‘vng) - € h](U,UX,U ’X’T) ’ (2-13)

XX

where % Quu(“’X‘T) is the convective velocity. To correspond to nonlinear wave

phenomena in a slowly varying media, we allow quantities to depend on the slow time
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and spatial scales, T = et and X = ex. As we will show later in this section, E
it is possible to assume that % Quu(u,X,T) can be chosen such that there are nonlinear :
oscillatory wave solutions of (2.1a) (for all fixed X and T) on the fast scale S
t when the perturbations eh and ezh] are absent, Typical examples are E
Q =-%8 (X,T)u3, in which case (2.1) becomes the slowly varying and perturbed L
Korteweg-deVries equation, and Q = %13(X,T)u4, in which in a similar way (2.1a) ¥
relates to the modified Korteweg-deVries equation.
The term ezh] is introduced since 0(52) perturbations can influence the
leading order solution for long time. At first, we calculate the effects of i
arbitrary slowly varying perturbations €h and ezh]. However, our primary interest
is in dissipative perturbations., Thus, later in the paper we assume eh is e
dissipative, but simplifications will only occur if we assume in addition that :j
ezh] is non-dissipative. ;
We briefly review some elementary ideas concerning conservation laws. We s
interpret u as momentum-density, so that (2.la)itself expresses the possible E
dissipation of momentum by the perturbations: S
%% * é% (%Qu * azuxx) N % Qux ¥ 200Uy, - €h - Ezh] ’ (2.1b) a
2
where-%ou-+ azuxx is the momentum -flux. Here, momentum also may change due to
the variable media, represented by the terms-%otu and Z“Qx“xx- Similarly, -
multiplying (2.1a) by u shows how the energy may be dissipated: S
23+ &, - e & b - 342 - Jua, - B,
- ehu - e:zh]u . (2.1¢) .',
:
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Thus, —Z—uQu "?Q + 2 [3; (uux) --fux] is the energy flux.

Typical linear perturbations are h = hou, which dissipates both momentum

and energy, and -h = wu__, a diffusive term which conserves momentum, but

XX
dissipates energy. In this latter case, (2.1a)is of the KdV-Burgers type.
However, for the moment we will be quite general and make no assumptions
concerning ¢h or azh]. Later, when we assume that ch represents dissipation,
we will allow any kind including nonlinear types.

To obtain the long time behavior of nonlinear dispersive waves incliuding
the ffects of a slowly varying media and the small perturbations, the method
of multiple scales will be used, We follow Luke's [5] procedure for the Klein-
Gordon equation as re-examined by Haberman and Bourland [3]:

- 28T L

£

T=c¢t

><
H

£X

This method is particularly suited for determining the moduiations of the

phase shift ¢(X,T). For example,

du _
") (ex + €¢X)uv *oeuy

In this way, (2.1a)becomes "exactly"




6 :'
1 P € 3 £ .
(8 + E¢T)u¢) *toeup + 5loy €oy) 30 Wt zaw Qo7 O
¢
'
2 3 2 Ry
+at(X,T) {8y + eoy) Uy * 368y + €0y) Uy E
2 b
+ BE(GXX + ecpxx)(ex + E@x) Uy + 3¢ (BX + ecpx) UXXLP .'
+ 3(-:2(9 + by u 4 52(9 + edyy Ju, + eu ] X
XX XX4 Sy X XXX XXXy XXX
= -eh{u,8,u + edp,u + eu (6)2u+
S S X" X* X WY .
+ 2e9,4,u,, + 2eH,u +€6u+0(52)XT] :
XTXT0h X7 X XXy > 0 5
2 - 2 N
- <h [U, s U“ + O(E)' (tj ) u ,u+ O(E),X,T] .
1 X" X vy
(2.2) X
:
3
The substitution of the perturbation expansion, N
»
amug gy ’ 3
.
will be facilitated by noting .
»
5
A
2 \
= Q (
Q,(u,x,T) QulugsXaT) + (ruy 4 ¢ u,) Q, (UgsX,T) N
U2 ~
¢ ] : 3
v 7 Ouuu(uO"x'T) * 007) N
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. _ £\ 2
h[as in (2.2)] = h(uo,exuOH.(vX) uOVV,X,T)

+elhyuy +hy (5u + dpug *+ug )
X v ¥ X

2
+ Zexuo *+ 8yyYp )] + 0(e%) ,

u + 23,%.U
XV
] X0y, vX v

2
’ ex uow“, X,T,
‘ o

where hu’ hu , and hu are evaluated at UO’ exuo )
inary differential

X XX 17
We obtain in this way, to leadina order, the nonlinear ord

equation which represents travelling wave solutions of the KdV type equations:

3 -0 (2.3)

-
(e
N —
><
=

where 12 : IZ(X,T). Equation (2.3)1is solved in the usual way. Integration
yields '
o1 . 2,. 3 _ '
‘JTUO ha ggxou(uo)xy|) + (X) UO - 'B . (2.4)
where B . B(X,T). By multinlying by 2u0 and integrating, we obtain an equation

which can be interpreted as conservation of energy for the system (2.4):

7Tug + £ Q(ug,X,T) + lz(ex)3(u 2. _oBu. + 28 , (2.5)

where A = A(X,T). The parameters A(X,T) and B(X,T) are similar in spirit to
those introduced by Whitham [6] for the slowly varying KdV equation. Our

analysis is valid for those Q(u,,¥,”) for which there are periodic solutions, see

"
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the "potential” 5Tug + %XQ(uo,X,T) of (2.5). From (2.5), we can define

uo(u,X,T) tc be an even function of y. We introduce the wave number k = ex and

frequency . = -%T . Luke [5] showed that the period in the fast variable .,

is constant, If we normalize that period to 1, we obtain the amplitude
dependent dispersion relation, w = w(k(X,T}, A(X,T), B(X,T), X,T), for the

nonlinear dispersive wave in a nonhomogeneous media:

V]
_k3/2 J 0max duO ]
a = "2' [
-7
v Vo - 2Buy + wuf - kQ(ug,X,T)

(2.6)

where the wave oscillates from uOmin to uomax’ two successive zeroes of the
denominator of (2.6). Here, there are two amplitude parameters A(X,T) and
B(X,T) unlike the case of the Klein-Gordon equation [3] where there is only
one E(X,T).

The higher order equations in the perturbation expansion are

where L is the linearization of the nonlinear operator in (2.3):

, 3
A ] . 23*
LSy oy T Q93 - (2.8)
dy
In a straight-forward manner, we obtain R], the term we will need

to determine the amplitude parameters A(X,T) and B(X,T) and the phase shift

<(X,T). We do not need ., troush it will be used in Appendix A to show that

(.

our procedure is equivalent to trat used by Dobrokhotov and Maslov [2]:
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- h(uo.exuow,exu0 X,T)

’ (2.9)
v

~n

63,3
Es A d

X 3

xYo Y
oK Yy

v

* 3exxTxYo
Yy

+

3 + 35

+ 3exxuO

“xxx0 "

u
X"Oyy.,

A

* Eyxxlo )
v

v

. 2

- hy(ugadyug »5yug s
¥ Wy

(95 + 25.,5,U

uy x®x4g 2y

i

Y

+ e

(2.10)

Equation (2.7) is a third-order equation. In order for u, to be periodic
(in ,), the Fredholm alternative implies that R; must be orthogonal to all

periodic solutions, 1 and Ug» of the homogeneous adjoint equation:




10

]
f R dy=0 i=1,2, ... (2.11)
0
;]
JORiuodv = Q i=1,2, .o . (2.12)

At 0(c), these yield the well-known equations to determine A(X,T) and
B(X,T). Using (2.9) and (2.11), directly yields

. 1 1 1

3 13 { 1 2

= Uuydy + 5 =% 1 Q dg;= = J Q ,dvy - ( h(uasByus 585U, o X,T)dy
T, Yo% T 7Y 2 Jy tux e TR

(2.13)

since ug is periodic, This shows that wave-momentum action may not be
conserved due to the rhs of (2.13), Using (2.9) and (2.12), after some

elementary algebra, we derive a similar result for the possible variation of

wave-energy action:

—_— luzd +l : {( Q Q)dw-q-lJ]Q dw-lJ]uQ dy
T 2% 23X 1y 0" 2 Jg X 2 Jy ux
C 22 Be? [ 12 e
B AR U P I
]
4 . 2
= = ' h(usy ByUn 5 By Un o X, TDudy (2.14)
o o Ixfor Px Yo, 0

Here, J, is the partial derivative of Q with respect to X keeping u fixed.

In many problems, the convective velocity Quu only depends on u, and thus in
this case, Q, = 0, preserving the conservation form of (2.13) and (2.14) if h=0.
The integrals in (2.13) and (2.14) depend on A(X,T), B(X,T), k(X,T), and

_CALBL,k,x,T). Thus the discersion relation (2.6) and conservation of waves,

S S S .. " P P s R A P N AL N RS RS A LR
AR P AP RN AT - o’ AT r v/ (' d‘"i‘ '-I' \(\ ~7 PN > \ N "“\ “ RO O W R RS A
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2 3 4 =

combined with (2.13) and (2.14) determine the amplitude parameters A(X,T)

and B(X,T) and the dominant phase parameters k(X,T) and w(A,B,k,X,T), but not

the phase shift ¢(X,T). Equations (2.13) and (2.14) agree with Whitham's [6]
result for the KdV. However, for the KdV, Q = %elfaand thus the momentum

flux Qu is proportional to the energy density u2, reducing by one the number

of independent integrals in (2.13) and (2.14). These results also show that aven
though the KDV has an infinite number of conservaiton laws, momentum and energy

are the only appropriate ones to consider when perturbations are applied.

3. Higher-Order Wave Actions.

In Appendix A, we determine the equations for the modulations of the

phase shift ¢(X,T) by eliminating secular terms at 0(62)!

f
b

1
R2d‘; = 0 and f Rzuodw =0 . (3.1a,b)

0
This approach is somewhat involved since it requires R2 given by (2.10).
Here, we use a simpler method which yields equivalent results. We show that
the phase shift is determined from the 0(e) wave action equations.

As Whitham [6] has shown for Klein-Gordon equations, exact equations for
the wave actions may be derived. For KdV type equations, an exact expression
for wave-momentum action is obtained by integrating (2.2) over y from 0 to 1

and applying the periodicity of u:

G piataliaitah At S el Sl Ack ful L O B e Sall Al Sel Sl Bl tof
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1 1 1 3
2 13 1 e 2287
3T 10“‘”’* 2 3X JOQud*“ "7 Louxd\” © e JOUdV
(1 1 '
='Jhd. 'EJh]d'r . (3.2)
0 0

By first multiplying (2.2) by u and then integrating, we obtain (with more

effort) an exact expression for wave-energy action:

1 ] 1
a ] 2 o l 3 - N 1 “ l 1
3T J 7Y AVt 2 o~ Qdv g JOQxd*’ "2 JO“qudv

1
323 2 2
Lt [(ex+e¢x)2Jfouwdu] - 3% 2 (e, + coy) foul,yuxdw]
] ] 1
2 2T ( r
+ e & uu d. = - hud, - € | hyudy
o “x Jg M

(3.3)

It is perhaps even simpler to obtain (3.2) and (3.3) by directly introducing
the multiple-scale assumption into (2.1b) and (2.1c), and then integrating.
Wave-momentum action (3.2) is "identical" to the leading-order result (2.13)

if the entire u is used as well as the total wave number, ©
3
)

X + e¢x, except

for the effects of the perturbations and 0(e”) dispersive term. However,

wave-energy action (3.3) is alterred slightly by the additional term

1
-3<12€-§% [(ex+ e¢x) J u, uyd ©]. This is an 0(c) correction, but since
0 hg

Ug is even in y, it is in fact smaller being at least 0(52). Thus, we have
shown that both wave actions are valid to at least one higher order if the

effects of the perturbations :h and ezh], are properly introduced.




These exact wave action equations, (3.2) and (3.3), are equivalent to
eliminating secular terms at all orders. For example, (3.2) is the same to
3 leading order as (2.13), and (3.3) relates similarly to (2.14). Moreover,
, evaluating the exact action equations to (0(e) is equivalent to eliminating
secular terms at 0(52) (see Appendix A). In particular, the O(e) wave-

momentum action terms from (3.2) yield

3 1 15 1 1 1 1 rl
B f ndv * 2 3% J Quia® - 2 foouuxu1 dy "J Spdv - J Ssdv

0 0 0 0
(3.4)
. and similarly the wave-energy action terms from (3.3) become
3T ), YU 2 ax Yoty 2 YU Quux 9V
/0 A0 0
) - 3.2 2 [ed M dv] - 32209 ](u )2 d ]
) oy Loy Uy Yg dv % 3% LOx®x 0/ ¢
: ‘0 v . 0 %
: J1 1
. = - [ & U dy - | S_usdy (3.5)
: oh 0 Jgs°0

b where we have separated the terms S, resulting from
the variation of h and the terms 65 resulting from the 0(e2) perturbation

and the slow derivatives of Q,uo, and k:

O
1

) 2
h huu1 * hu ( S ¢Xu0¢) ¥ hU (ex Tyy 28

bylUn )
X XX X*X"0vy

S.=h u, +h (25u
S u, 0x U X wa

+
OyxUo,) *M
*
For eh to be a dissipative perturbation, h(u,ux,uxx,X,T) must be even in the

u, argument [i.e. h(u,-ux,uxx.X,T) = h(u,ux,uxx,X,T)]. Since Ug is even in y, in

*
Generalizations to other kinds of dissipation (for example, dependent on third
’ or higher derivatives) are easily made,

a8

s e ™ e DY PR W R e e % o e % ¥ ] “w
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. 2 . . ) ,
this case h(uo'ex“o"“xuo_,'X’T) is even in ., hu is odd, and hu is even,

o X XX
We thus obtain that the slowly varying terms 65 ha e no effect,

1 .

P [ Ug d. =0, if ¢h is dissipative and ezh] is non-dissipative

o *® o *®

(odd in the u, argument). In this case (3.2) and (3.3) are the first variation
of the wave action equations. Therefore, the wave action equations (2.13) and

(2.14) are valid to at least one higher order if ¢h is dissipative and ezh1

is non-dissipative. This means that (2.13) and (2.14) are valid to O(ez) when

Ug -+ Yg + €Uy and %X — k + €y s if the contribution from 65 vanishes. 1In

general, this is not valid, but {3.2) and (3.3) are valid.

4. Modulated Phase Shift for KdV Type Equations. g

The equations for the modulations of the phase shift ¢(X,T) will be

determined inthis section by evaluating the appropriate higher order action 2
equations, (3.4) and (3.5). We will assume ech is dissipative and ezh] non- ;:
2 -
dissipative :5(1,u0)d, = 0. These =quations require knowing properties p
O "

of Ups which satisfies L(u]) = R]. By differentiating (2.3) with respect
to ., we immediately obtain the well-known result that y
.
L(uo )y =0 , (4.1) '.
that is, Ug is a homogeneous periodic solution, which is odd in y. :‘
v O
It is less well-known that the other homogeneous solutions may be obtained {

by differentiation with respect to a parameter. Dobrokhotov and Maslov [2]
used this idea for both ordinary and partial differential equations of the

Klein-Gordon type, but an alternate representation introduced by Haberman and

Bourland [3] yields a better result for ¢(X,T), independent of the type of
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dissipation. We should recall that the parameter . in (2.3) satisfies the
dispersion relation (2.6) and thus is a function of A, B, and k. By directly

taking the first partial derivatives of (2.3) with respect to these, we obtain

L(UOA) = IWAUOV (4-2)
L(uOB) = .gYp (4.3)
)
- ] 2.2
Hug ) = =io =7 Quto, ~ 3k
v Y Yoy

An equivalent form of the latter expressior is obtained using (2.3)

_ 3.
L(“ok) - (‘“k - T) Yo +Quuu0|‘,) ) (4.4)

v

This has yielded a second homogeneous solution, wgus = wpU, , Which is periodic
B 0A A OB

and even (and hence independent of Ug ). To obtain a third homogeneous

solution, our experience with the K]e%n-Gordon equation suggests we should

analyze the non-periodic even function vy By direct calculation

v

_ 1 2,3 D
L(,u0 ) = - g t 5k Quuuo, + 3ak ug .

v " ¥ Y

Using (2.3) again, we obtain \

L(wuo,) = ZQUOH - kQuuuov
Y v ¥

Thus from (4.2) - (4.4), a proper combination of Ug.» Yo and Vg will be ,
A k v

a third homogeneous solution, namely uA(uOk + % wuok)- (wk - %)uOA, which is

. . ey e ]
....... - N T L P L IR T R I A T T A A AN P R Wy sy g g (p oy ) Cplfly
X Y N Y PN N N TN T S e e i e S A
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even and non-periodic. [u could be used here with ., - ., instead of u, .]
OB A B OA

We are now able to solve L(u]) = R]. We could use variation of parameters,

However, it is easier for us to note that from (2.9)

1 5
L(u ) =R = -drUy -3 6, = Q 326, ¢, u
]even ]odd T 0« 275 u XX 0¢>¢
1, 1 2 l .
L(u ) =R =y, - 5= +=0Q - (3~ u +3,,4u. ) +h
]odd even OT 2 KTu 2 Tuk X0 X XXX Ov; {

since h is even for dissipative perturbations. The integrals in (3.4) and (3.%)

only require the even part of u,, u » significantly simplifying the needed
] ]even

calculations. Egquation (2.3) is used once more (to eliminate u ) so that

0,

vy

L(u ) = u, (=2, - 32: )+:.Q u
]even O‘ T k "X X“uu O’

By appropriate use of (4.2) and (4.4), we have that

Yo
L{u - 2.u "’"—-—('?*’JG)]"'O
1even X 0k ‘A T k™ X

Thus, the expression in the bracket is a homogeneous solution, which is periodic

and even. The only periodic even homogeneous solution is Lglg » this

- wWpl
A A0

must be proportional to it, so that

Yo

A !
— {¢r + woo,) + Colugun - waln ) (4.5a)
even K “p T k™ X 2'"B OA A OB

where CZ(X,T) is an arbitrary multiple of the periodic and even homogeneous

solution., We have thus shown that the arbitrary multiple of the other homogeneous

o

[
P
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A

solution, Ug » vanishes when the secularity conditions equivalent to (3.4)
and (3.6) ar; applied. Luke [5] had shown a similar result for the Klein-
Gordon equation.

The substitution of (4.5a) into (3.4) and (3.%) appears formidable.
We can make the calculation elementary by using an observation by Haberman
and Bourland [3] for the Klein-Gordon equation. Equation (4.5a) is equivalent )

to
Uy = D Uy (4.5b)

where D is a linear first-order (in the slow parameters) differential operator

with variable coefficients:

L KA . . : .
_ ,x—‘—k- -*——7—— 'A *CZ(/(,T)(WBI'\AA T;B‘) . (4.5(:)

>
.
—

In i5, we show that D is the Taylor series operator in the parameters A, B, and k.

This operator has the property that
D(k) = sy and 0(.) = - :p (4.6)

which will be quite useful.

AR

The rhs of the higher-order action equations (3.4) and (3.5) are simplified

by noting that

| I P

. ... . o - .« v e . . . . v LT ~ LR
A T e ﬂ:f.lnftf {.fzf'f .l ff.f. 'j.tf\l RGN A :\w Ny



S 2 _
D joh(uO’:XUO_’TXUO ‘,X,T) d, =
r] .( A ~ ~ A~ ~ -\f
o y hu Du0 +h X[ XDUO + D(k)uo'] + hu [~)(Du0 _+ 2',:)(D(k)u0 1 d
. X XX o L.
1
=, £.d
40 h
and similarly
Ao 2 ; il
D o h(uo,--xuov,-x ug +Xs )uOd, = o ‘g d-

~

since 0 is a first-order partial differential operator in the slow parameters

that commutes with the fast derivatives /... We also used Uy = Du0 and
- even
Dik} = Do There are corresponding simpiifications for the ~hs of (3.4) and

;-

2.0). First of all,

A~ ] 1 . (1 o1 -
, 4 = Q Du,d. , C Q. d. = Q  Du,d. ,
o v Jg Tuu 0 jg YK ‘0 uux - 70
~ ] f] A
0 { -0 =
o ‘UOOu 2)d . ; uOOUU[)uOd ., and
0 0
] -1 .
. 0 o , - "~
O \JU)U" R d ‘0 UO{UU-!DuOd . ’

since Q depends on A, B, and k only through ug- In addition, for (3.5), we note

that

~ e
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~ ‘] -1 .
1 2 N
D, msu,d u.Dund.
‘0 2 0 ‘5 o -Me .
.
SURFRLNE 2o UL >
D ( 2 Y d.) = “y o, 2y D(uO )d. + 2kD (k) | (uO )< d . 5
C 0 . -0 X
h
where again D(k) = Iye In this manner, we derive the remarkable simple result -j
that the higher order wave action equations (respectively momentum and enerqy) }
'
have the following nearly conservation form: ’
~ ’] ] ~ 1 ~ '] 'l ’] ..
<0, 6 usd. + 5 =0 Q,d. =-0, ha. -3C Q d (4.7) 4
T 0 0 2 0 ‘0 C ux
-1, ‘ _— — y
=0 w2 Y d.+ 5 x 0 ; (Ul -Qld. - 50 uyT,,d o
0 0 0 E
- ’] - f] -~ ] :
1/ 3 2 - 2 2 -
+50,0,d. -5 5 =D+, , uy d.)= - , hu,d . -
2 o 2 X X ‘0 0 % 0 .
(4.8) -
in the case where the perturbation .h is dissipative and rzh] is non-dissipative, ;
It 1s interesting tonote that {4.7) and (4.8) may be obtained from the leading N
order action equations, (2,13) and (2.14), by replacing the derivative terms ot tre >
conservation law by the respective derivative acting on D (i.e., N
—F by -y D and — by ~ 0) and]the non-der;vative tﬁrms in the ?ct1on equations .
. . ~ ot , " .

by D operating on them (1.e. Qxd .by D
0

b
.

) Qxdov i hdo by D , hd»' EtC.)- we .
0 ‘0 0 K
[ 3] have also shown this phenomena for the Klein-Gordon equa‘tion, and thus we

believe it to be a general principle for appropriately perturbed systems. Perha;-,

a general proof of its validrty could be given using Whitham's [6] averaged
Lagrangian principle with tre necessary inclusion of weak dissipation,

Altnouqh (4.7} and 3.2 are rerarkably simple, expressing the validit, o

ARY AP
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tre forst varvation of each wave action: :
<
“ 5. 1.+ k, I N
-1 + B . '
. A ]T B ]T K :
(5.4) by
* A Gy +Bygyt kg =0, =
]x A IX B ]x k [
~'ere we note that all the dissipation terms have been balanced, leaving a :
rec,tt o of uriversal form,
ne now e the conjectured frequency perturbation (5.2) to eliminate A] 5
<
&
O . S SR B ‘B , (5.5) %
‘ A ~A :.
e - . oangd My T, It can be shown [non-trivial, but straight \
h
*orwar? o Livn: 4.5 - 4.6} ] that :
Y
N
LY
LY
S LT, (5.6)
Ay
Y
rue wrer ©2 a5 substituted into (5.4), we obtain "1
N
) - [ 3 “-,
A - s r . vl
T e bale)r Tg r GglalrTp texr Iy :
—'T- . h -
+ _ - + =
- 9 7 Lealplyag +lug Cplyap + oxxay =0
] ¥
[
wr 0 ejutvalent to 4.72) - (4,12). In this way, we have verified the
».
e ture that g highly accurate dispersion relation may be obtained using D
s.ery el rerturbations of the amplitude parameters., Furthermore, the modulations .
‘ru crauw wroee are doter cred from equations equivalent to the highly .
,
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accurate wave action equations, when highly accurate dispersion is calculated.

CCL L O

We now explain our earlier remark that 6 is the Taylor series operator in
. the narameters A, B, and k. The leading-order oscillatory wave solution for
: KdV type equations is in the form ug = uo(y;A,B,k), when the dispersion relation
(2.6) is satisfied. Some (but not all) perturbations of this can be obtained
by perturbing the parameters A, B, and k (a Taylor series) in which case

u]’ = Duo, where
aven

3
138 Y M - (5.7)
Through the use of (5.5) and (5.6), it is seen that (5.7) is identical to (4.5c).

Appendix A: Secularity Condition at O(ez).

In this appendix, we show that eliminating the secular terms at 0(52) is
equivalent to analyzing the O(c) wave action equations. From (3.1a) using
E (2.10), we immediately obtain (3.2) using the pericdicity of Ugslys and functions
)4 Ug- Similar results are obtained gor wave-energy action, but with much greater
N effort. One term that is present in [ R2u dy = 0 can be evaluated using some

ideas that worked on the Klein-Gordon equation ([2],[3]):

1 2
5 1 2 o 1y ",
®x J Yo 30 (7 Uy Quugldv - - 8 j Yo 2 Quuu 9V
0 U
1 1
=6 Q u,u, dy=-8 u 2 (u,Q )duy
X g uu 171 e X 0 1 3y * 1tuu

J] [ ) 2 2 ] el
- L{u,) - 5,u, - o 6,U u,dy = - J u,R,dy
0 1 T 1V X ]www 1 0 11

. ~¢ mave integrated by parts three times (equivalent to using the adjoint

.sed the definition of L, and noted L(u]) = R], where R] is given
1

rer, aftera lengthy but e]ementanyca]cu]ation,} Rzuodw = 0 becomes (3.3).
0
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Appendix B: Some Integral Identities

The averaged densities and fluxes in (4.10) and (4.11) can be related.

By integrating (2.4) using the periodicity of uo, we obtain

1 1
1
-wjouodw+—2-kJOQudw=-B . (8.1)
By simply using (B.1), (4.13) is obtained from (4.10). It is not much harder
to derive (4.14). Multiplying (2.4) by ug and integrating yields

1 1 1 1
2 1 I 2 e

] ] r] (1
- wj( uozdw+ kJde+ aZkBJ ul dqy = -28 ) uydy +24
0 0 0 0

(8.3)

Equations (B.2) and (B.3) may be combined to yield

1 1
2,20t 2 A w
3ak JOUO d;—*'z-—‘k‘

v Jou d‘l) J(Q'UQ) ?

(]
from which (4.11) directly becomes (4.14) since terms involving )O(Q- uQu)de

cancel,
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